PHASOR DIAGRAM OF TRANSFORMER

Prepared By
ELECTRICALBABA.COM
IMPORTANT POINTS FOR PHASOR OF TRANSFORMER

- Transformer when excited at no load, only takes excitation current which leads the working Flux by Hysteretic angle α.
- Excitation current is made up of two components, one in phase with the applied Voltage V is called Core Loss component (I_c) and another in phase with the working Flux Φ called Magnetizing Current (I_m).
- Electromotive Force (EMF) created by working Flux Φ lags behind it by 90 degree.
- When Transformer is connected with a Load, it takes extra current I' from the Source so that $N_1I' = N_2I_2$ where I' is called load component of Primary Current I_1.
IMPORTANT POINTS FOR PHASOR OF TRANSFORMER

- So under load condition, \(I_1 = \) Primary Current, is phasor Sum of \(I' \) and Excitation Current \(I_e \).
NO LOAD PHASOR OF A TRANSFORMER

Secondary Open
NO LOAD PHASOR OF A TRANSFORMER

- Working Flux Φ taken as Reference
NO LOAD PHASOR OF A TRANSFORMER

- Excitation Current I_e leading Φ by α.
NO LOAD PHASOR OF A TRANSFORMER

- Induced EMF E_1 and E_2 lagging Flux by 90 degree.

$E_1, E_2 = V_2$
NO LOAD PHASOR OF A TRANSFORMER

- $V_1' = -E_1$

$E_1, E_2 = V_2$
NO LOAD PHASOR OF A TRANSFORMER

- Voltage drop \(r_1I_e \) in Primary.

\[V_1' = -E_1 \]

\[r_1I_e \]

\[I_c \]

\[I_e \]

\[\alpha \]

\[I_m \]

\[E_1, E_2 = V_2 \]
NO LOAD PHASOR OF A TRANSFORMER

Voltage drop IeX1 in Primary due to reactance.

\[V_1' = -E_1 \]

\[\alpha \]

\[I_c, I_m, I_e \]

\[E_1, E_2 = V_2 \]
NO LOAD PHASOR OF A TRANSFORMER

Source Voltage $V_1 = V_1' + r_1 I_e + j I_e X_1$, phasor sum.

$V_1' = -E_1$

$E_1, E_2 = V_2$
No load Power Factor = $\cos \Theta$

- V_1' = $-E_1$
- $E_1, E_2 = V_2$
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD

- As load is inductive, secondary current will lag secondary load voltage V_2 by some angle.
- $r_1 =$ Primary winding Resistance
- $X_1 =$ Primary winding leakage Reactance
- $r_2 =$ Secondary winding Resistance
- $X_2 =$ Secondary winding leakage Reactance
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD

- Working Flux Φ is taken as reference.
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD

\[I_e \]

\[\alpha \]

\[\emptyset \]
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD

\[\text{E1, E2} \]

\[\text{I}_e \]

\[\alpha \]

\[\emptyset \]
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD

\[V_1' = -E_1 \]

\[\alpha \]

\[I_e \]

\[E_1, E_2 \]

\[\emptyset \]
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD

- Working Flux ϕ is taken as reference.
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD

- Working Flux Φ is taken as reference.
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD

- Working Flux Φ is taken as reference.
Working Flux \varnothing is taken as reference.
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD

- Working Flux Φ is taken as reference.
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD

- Working Flux Φ is taken as reference.
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD

- $E_2 = V_2 + I_2r_2 + jI_2X_2$, phasor sum
PHASOR OF A TRANSFORMER FOR INDUCTIVE LOAD

- Primary Power Factor = \(\cos \theta_1 \), angle between \(V_1 \) & \(I_1 \).
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD

- As load is capacitive, secondary current will lead secondary load voltage V_2 by some angle.
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD

- Working Flux Φ is taken as reference.
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD

E1, E2

α

Ie

∅
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD

\[V_1' = -E_1 \]
\[\alpha \]
\[I_e \]
\[V_2 \]
\[E_1, E_2 \]
\[\varnothing \]
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD

\[V_1' = -E_1 \\]

\[\theta \]

\[I_e \]

\[I_2 \]

\[\theta_2 \]

\[E_1, E_2 \]
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD

\[V_1' = -E_1 \]

\[I_1' \]

\[\phi \]

\[I_e \]

\[\theta_2 \]

\[E_1, E_2 \]

\[\theta \]
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD

\[V_1' = -\frac{E_1}{E_1} \]

\[I_1' \]

\[I_1 \]

\[I_1, I_2, I_e \]

\[\alpha \]

\[\Theta_1, \Theta_2 \]

\[E_1, E_2 \]

\[\emptyset \]
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD

\[V_1' = -E_1 \]
\[I_1' \]
\[I_1r_1 \]
\[jI_1X \]
\[\alpha I_e \]
\[E_1, E_2 \]

\[\theta_2 \]
\[I_2 \]
\[I_1 \]
\[I_e \]
\[\alpha \]
\[\theta \]
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD

\[V_1 = V_1' + I_1 r_1 + j I_1 X_1, \text{ phasor sum} \]
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD

\[V_1' = \ldots \]

- \[E_1 \]
- \[I_1 \]
- \[r_1 \]
- \[jX_1 \]
- \[V_1 = V_1' + I_1r_1 + jI_1X_1, \text{ phasor sum} \]
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD

\[V_1' = -E_1 \]

\[I_1' \]

\[I_1 \]

\[I_{1r1} \]

\[jI_1X \]

\[E_2 = V_2 + I_2r2 + jI_2X2, \text{ phasor sum} \]
PHASOR OF A TRANSFORMER FOR CAPACITIVE LOAD

$V_{1}' = -E_1$

I_1'

I_1

I_{1r1}

jI_1X

$V_{1}' = -E_1$

I_1

$E_2 = V_2 + I_2r_2 + jI_2X_2$, phasor sum

E_1, E_2

V_2

I_2

I_{2r2}

jI_2X_2

Θ_2

Θ_1

I_e

α

ϕ

α

ϕ

ϕ
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

- For Resistive Load, load current will be in phase with the load Voltage V2.
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

- Working Flux Φ is taken as reference.
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

E₁, E₂

Iₑ

α

∅
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

\[V_1' = -E_1 \]

\[\alpha \]

\[I_e \]

\[E_1, E_2 \]
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

\[V_1' = -E_1 \]

\[I_e \]

\[\alpha \]

\[V_2 \]

\[E_1, E_2 \]

\[\emptyset \]
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

\[V_1' = -E_1 \]

\[\angle I_e \]

\[E_1, E_2 \]

\[I_2 \]

\[V_2 \]
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

\[V_1' = -E_1 \]

\[I_1' \]

\[I_e \]

\[V_2 \]

\[I_2 \]

\[E_1, E_2 \]
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

\[V_1' = -E_1 \]

\[I_1' \]

\[I_1 \]

\[I_e \]

\[V_2 \]

\[I_2 \]

\[E_1, E_2 \]

\[\alpha \]

\[\emptyset \]
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

\[V_1' = -E_1 \]

\[I_1' \]

\[I_1 \]

\[I_e \]

\[I_2 \]

\[V_2 \]

\[E_1, E_2 \]
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

\[V_1' = -E_1 \]
\[I_1' \]
\[I_1 \]
\[I_{r1} \]
\[jI_1X_1 \]
\[I_e \]
\[\alpha \]

\[V_2 \]
\[I_2 \]
\[E_1, E_2 \]
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

\[V_1 = V_1' + I_1r_1 + jI_1X_1, \text{ phasor sum} \]
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

\[V_1' = -E_1 \]
\[I_1' \]
\[I_1 \]
\[jI_1X_1 \]
\[V_1 \]
\[\varnothing \]
\[I_e \]
\[\alpha \]
\[I_2 \]
\[V_2 \]
\[I_2r_2 \]
\[E_1, E_2 \]
PHASOR OF A TRANSFORMER FOR RESISTIVE LOAD

\[V_1' = -E_1 \]
\[I_1' \]
\[I_{1r1} \]
\[jI_1X_1 \]
\[V_2 \]
\[E_2 = V_2 + I_{2r2} + jI_2X_2, \text{ phasor sum} \]

\[\alpha \]

\[I_2 \]
\[I_{2r2} \]
\[jI_2X_2 \]

\[E_1, E_2 \]

\[\emptyset \]
COMMENTS? / QUESTIONS???

Thank you ...